This function performs an ANOVA or Kruskal-Wallis test depending on the assumptions of normality and homoscedasticity. It then returns a summary of statistical groups using a post-hoc SNK test (for ANOVA) or Kruskal-Conover test.
Utilisation
test_stats(
self,
prep_data = NULL,
fcol = NULL,
block = FALSE,
alpha = 0.05,
p.adj = "bonferroni",
force_test = NULL
)
Arguments
- self
An instance of the
UserData
R6 class containing metadata$moda_desc- prep_data
character, the name of a dataframe inside self$prepared_data.
- fcol
col name as factor. NULL by default, if not provided xp_trt_name or xp_trt_code is used
- block
colname to use as block. if FALSE : no block factor tested. if TRUE : "block_code" is used. if value : value is used
- alpha
Significance threshold (default = 0.05).
- p.adj
Method for adjusting p values. see agricolae::LSD.test(). “none”, “holm”, “hommel”, “hochberg”, “bonferroni”, “BH”, “BY”, “fdr”
- force_test
Force "anova" or "kruskal" (bypass assumptions).
Détails
If xp _trt_code
is not provided, it is inferred from the plot_id
column:
numeric plot codes are extracted from the beginning of the string (e.g. "10A" to 10),
and "TNT" is used directly for untreated control plots.
Group comparison is only meaningful if the global test (ANOVA or Kruskal-Wallis) is statistically significant.